B. Sc., Chemistry Syllabus

I to VI Semesters
(w. e. f. 2014)

Department of Chemistry
Central College Campus
Bangalore - 560 001
FOREWORD

As per the directive from the Bangalore University, the Chemistry syllabus for the B. Sc., degree course (CBCS) had to be prepared. Guidelines for this were provided by the University.

In the Department of Studies in Chemistry, Central College, with the help of the Chemistry Teachers’ Forum, a Core Group involving the Teachers of the University Department and affiliated colleges was constituted. This Core Group participated in work-shops held on 22.04.2014, 30.04.2014 and 19.05.2014, keeping in view the aims of the UGC Model Curriculum in developing interdisciplinary skills in students linking general studies with professional courses and allowing both vertical and horizontal mobility and also catering to local needs the syllabus was prepared.

Teachers of different branches of Chemistry, namely Inorganic, Organic, Physical and Biochemistry had separate and joint brainstorming sessions and arrived at a Draft Syllabus in Chemistry for SIX semesters. The Chemistry Teachers’ Forum played a pivotal role during the drafting of the syllabus. The Draft Syllabus in chemistry was brought to the attention of a wider group of Teachers for further refinement on 23th May 2014. The final draft incorporating the suggestions was placed before the Department Council on 02. 6. 2014 and then the Board of Studies in Chemistry (UG) on 07. 6. 2014 for approval.

CHAIRMAN
Department of Studies in Chemistry
Central College Campus
Bangalore University
Bangalore-560 001
Members of the Committee for the Preparation of the Chemistry Syllabus for the B. Sc., Degree Course (Semester Scheme)

Chemistry Teachers’ Forum: Bangalore University, Bangalore

Physical Chemistry Section
Dr. Girija C R SSMRV College, Bangalore
Mr. Sripathi Vivekananada College, Bangalore
Dr. Vasundara D E BMS College, Bangalore
Ms. Malathi M Rural College, Kanakapura
Mr. S. Uday Kumar Rural College, Kanakapura

Inorganic Chemistry Section
Mr. H B Mallesh GFGC, Channapatna
Mr. Vijaya Babu B. GFGC, Vijayanagar
Mr. Ramanna Kongadiappa College, Doddballapura
Dr. Muddu Krishna K R. Govt. First Grade College, Varthur, Bangalore
Ms. Hamsini S GFGC Chckaballapur.
Ms. Vanitha G K GFGC, Dddaballapur
Mr. G R Rangappa GFGC, Kolar
C Sanjeevarayappa GFGC, Yelahanka

Organic Chemistry Section
Dr. Shylaja S GFGC, K R Puram, Bangalore
Dr. Rekha S VVS First Grade College, Bangalore
Dr. Shashikala Devi K Maharani Science College, Bangalore
Dr. Prathima Rao Vivekananda College, Bangalore
Ms. Shamsiya Rizwana M E S College, Bangalore
Mr. Sridhar B T Maharani Science College, Bangalore

Biochemistry Section
Dr. Nanda N BMS College for Women, Bangalore
Ms. Radhika R GFGC, Channapatna
Ms. Kathyayini National College, Gowribidanur.
Proceedings of the Meeting of Board of Studies in Chemistry (UG) held on 7th June 2014 at 10.30 am in the Department of Chemistry, Central College Campus, Bangalore-560 001.

The Chairman welcomed the members of the Board to the meeting and placed the agenda before them for discussion.

Agenda:
1. Scrutiny and approval of the Syllabus for the B. Sc., Degree, Chemistry Course *(Semester Scheme)*.
2. Preparation of the BOE (UG) and Professional Courses for the Academic Year 2014-15.

The Chairman informed the members that, as per the directive from the Bangalore University, the Chemistry syllabus for the B. Sc., degree has been prepared with the help of the Chemistry Teachers’ Forum which constituted a Core Group form affiliated Colleges, is proposed to be introduced from 2014 onwards. In this connection, the Core Group participated in workshops held on three days: 22. 04. 2014, 30. 04. 2014 and 19. 05. 2014 and prepared a Draft syllabus. The syllabus was then finalized in a workshop conducted on 23th May 2014 in the presence of a wider group of Teachers represented by most of the colleges offering Chemistry at UG level. The draft syllabus was then placed before the Department Council on 2. 6. 2014 for approval, the approved syllabus is now placed before the Board for Scrutiny and approval.

The Board of Studies (UG) approved the Syllabus after some modifications.

The Board also prepared the BOE (UG) Chemistry and BOE Professional Course (BE., Chemistry).

The meeting ended with the vote of thanks by the Chairman.

The following members were present.

1. Dr. Shaheen Taj
2. Sri. R. Vinay Kumar
3. Sri. S. Vijay Kumar
4. Sri. H. B. Mallesh
5. Sri. G. Siddalingaiah
6. Smt. M. Malathi
7. Dr. Venkatesha, B. M *(External Member)*
8. Dr. Nanjundaswamy, N *(External Member)*
9. Dr. M. A. Pasha Chairman, (BOS, UG)
SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>Title of the paper</th>
<th>Contact hours/Week</th>
<th>Exam. hours</th>
<th>IA Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry-I</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry Practical-I</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry-II</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry Practical-II</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Third Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry-III</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry Practical-III</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry-IV</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry Practical-IV</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Fifth Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry-V</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry-VI</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry Practical-V</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Chemistry Practical-VI</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Sixth Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry-VII</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry VIII</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Chemistry Practical-VII</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Chemistry Practical-VIII</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
</tr>
</tbody>
</table>
B. Sc., – I Semester
Paper- I

UNIT-I

Mathematical Concepts for Chemistry 4 hours

Logarithmic relations: Definition, some important relations like \(\log(m+n) \), \(\log\left(\frac{m}{n}\right) \), \(\log n^m \), change of base (\(\log_2 \rightarrow \log_\alpha \)). Application in the calculation of pH.

Curve sketching: How a curve is sketched with a set of points: linear and non-linear (asymptotic) with a set of points, sketching both linear and non-linear curves. Calculation of slope in the case of linear curve. Extrapolation of linear curve and arriving at a limiting value.

Parabolic curve- maximum and minimum. Differentiation: Meaning and derivative of functions like \(e^x \), \(\log x \), \(\sin x \), \(\cos x \), \(\frac{1}{\sqrt{x}} \), \(x^n \) and \(\sqrt[n]{x} \), \(\frac{dy}{dx} = 0 \) at maximum and minimum.

2nd order differentiation: for maximum and minimum (derivation from first principles not required). Rules of differentiation for \(y = u + v \), \(y = uv \), \(y = \frac{u}{v} \) and \(y = ku \), where \(k \) is constant.

Partial differentiation: Explanation, applications using the equation, \(H = U + PV \) and \(G = H - TS \).

Integration: Meaning and integrals of functions like, \(dx \), \(x^2 \), \(\frac{1}{\sqrt{x}} \), \(\frac{1}{x^2} \), \(\frac{1}{x^3} \), \(x^n \), \(e^x \), \(\sin x \) and \(\cos x \). Simple problems from I and II order kinetics.

Exact and inexact differentials: Examples from internal energy and enthalpy. Definite integrals.

Probability: some definitions, examples from atomic orbitals, wave functions and entropy.

Gaseous state 9 hours

Introduction: Need for Maxwell-Boltzmann distribution law, mathematical expression for both mole and molecule-explanation of the terms only. Explanation of velocity distribution curves based on this law (no derivation). Mean free path, collision frequency and collision number. Definition and expressions using SI units (no derivations). Derivation of expression for most probable speed from Maxwell-Boltzmann equation Definitions and expressions for rms velocity and average velocity, relationships between them. Problems.

Andrew’s isotherm on carbon dioxide and explanation of the curves (no experimental details). Derivation of critical constants \(T_c \), \(P_c \) and \(V_c \) from van der Waal’s equation and their experimental determination by Cagniard de La Tour method for \(T_c \) and \(P_c \). Amagat’s mean density method for \(V_c \). Problems on the calculation of \(T_c \), \(P_c \) and \(V_c \). \(a \) and \(b \).

Law of corresponding states-statements, reduced equation of state and explanation, Joule-Thomson effect-explanation. Joule-Thomson co-efficient, inversion temperature-definition (no derivation). The application of Joule-Thomson effect to the liquefaction of air and hydrogen by Linde’s process.

UNIT-II

Photochemistry 4 hours

Laws of photochemistry. Grotthus-Draper law, Stark-Einstein law, differences between photophysical and photochemical processes with examples. Comparison of photochemical and thermal reactions. Quantum yield of photochemical combination of (i) \(H_2 \) and \(Cl_2 \) (ii) \(H_2 \) and \(Br_2 \) (iii) dissociation of HI (iv) dimerisation of anthracene. Photosensitization, photostationary
equilibrium. Singlet and triplet states. Fluorescence, phosphorescence, luminescence, bioluminescence and chemical sensors.

Beer-Lambert’s law and its applications. Numerical problems on absorption coefficient and molar extinction coefficient.

Liquids and Solutions
9 hours

Properties of liquids-Viscosity, Surface tension and Parachor-Definition, mathematical expression, numerical problems and factors affecting them.

Viscosity- Definition, mathematical expression, Coefficient of viscosity, effect of temperature, size, weight, shape of molecules and intermolecular forces on it.

Surface Tension-Definition, mathematical expression, effect of temperature and solute on it

Parachor-Definition, Sugan equation, calculation and applications. Numerical problems.

Liquid Mixture: Review of Raoult’s law, ideal and non-ideal solutions.

Completely miscible liquids-Fractional distillation Tc curves for all the three types, azeotropic mixtures -examples.

Completely miscible liquids-Critical solution temperature (Three types), examples. Effect of addition of salt on CST of phenol-water system.

Immiscible liquids-Steam distillation and its applications.

Distribution law-Statement, partition coefficient and condition for validity of distribution of distribution law. Application-solvent extraction

Dilute solutions- Review of colligative properties and concentration terms

Determination of molecular mass of a solute by: (i) Berkeley-Hartley’s method (π); (ii) Beckmann’s method (ΔTf) and (iii) Landsberger’s method. Numerical problems.

UNIT-III

Periodic Table and Periodic properties
9 hours

Review of the modern periodic table (with respect to classification of elements based on outer electronic configuration)

Comparative study of elements of alkali and alkaline earth metals, chalcogens and halogens with respect to electronic configuration, atomic and ionic radii, ionisation energy, and electronegativity. Halides, oxides and carbonates of alkali and alkaline earth metals. Hydrides of chalcogens and halogens.

Analytical Chemistry
4 hours

Errors: Classification, minimization of determinate errors, accuracy and precision. Significant figures and their computations.

UNIT-IV

Basic concepts in organic chemistry 4 hours
Bond cleavage – homolytic and heterolytic. Types of reagents – electrophilic and nucleophilic reagents. Reactive intermediates - generation and relative stabilities of carbocation, carbanion, carbon free radicals and carbenes – explanation for stability and reactivity based on inductive, resonance and hyperconjugation effects.

Aliphatic Hydrocarbons 9 hours
Alkanes: Sources, Nomenclature of branched chain alkanes, preparation of symmetrical and unsymmetrical alkanes- Corey- House reaction and Wurtz reaction - their merits and demerits.
Conformational analysis of n-butane - Sawhorse and Newman projection formulae to be used - Energy profile diagram.
Alkenes: Preparation of alkenes by Wittig reaction-stereoselectivity. Addition of HX to unsymmetrical alkene - Markownikov’s rule and Antimarkownikov’s rule with mechanism.
Dienes: Classification- isolated, conjugated, cumulated. Structure of allene and butadiene.1,2 addition and 1,4 addition reactions. Diels Alder reaction-1,3-butadiene with maleic anhydride.
Alkynes: Methods of preparation - Dehydrohalogenation of vicinal and geminal dihalides; and higher alkynes from terminal alkynes. Reactions - metal ammonia reduction – significance. Oxidation with KMnO$_4$, acidic nature of terminal alkynes.
UNIT-I

Quantum Mechanics and Atomic Structure 13 hours

Review of Bohr’s atomic model:
Derivation of expressions of for radius, energy and ionisation energies of hydrogen like atoms.
Numerical Problems.
New quantum mechanics-Sinusoidal wave (Explain sinusoidal wave.) equation (classical wave mechanics); Schrodinger wave equation- derivation. Postulates of quantum mechanics.
Significance of terms- (i) Hamiltonian operator; (ii) eigen function \(\Psi \) (significance of \(\psi \) and \(\psi^2 \)); (iii) eigen values.
Application of Schrodinger equation: (i) to particle in one dimensional box (derivation required);
(ii) to the hydrogen atom (detailed solution not required)
Expressing the solution as a product of \(\psi_{n, l, m} (r, \theta, \phi) = \psi_{n, l, m} (r) \psi_l (\theta, \phi) \)
Explanation of quantum numbers (only qualitative). Radial probability distribution and angular
probability distribution. Orbitals

UNIT-II

Chemical bonding 13hours

Ionic bond: Lattice energy, Born-Haber cycle, Born-Lande equation (derivation not required, problems on Born-Lande expression to be worked out). Calculation of lattice energies of NaCl and MgO,effect of lattice energy on solubility of ionic compounds.
Covalent bond: Valence bond approach: hybridization and directional characteristics of sp, sp\(^2\), sp\(^3\), sp\(^2\)d, sp\(^3\)d\(^2\). Shapes of BeCl\(_2\), BF\(_3\), SiCl\(_4\), PCl\(_5\), SF\(_6\),VSEPR theory: shapes of CH\(_4\), NH\(_3\), NH\(_4^+\), H\(_2\)O, BrF\(_3\), ICl\(^-\).Molecular orbital theory: H\(_2\), He\(^{2+}\), Be\(_2\), N\(_2\), O\(_2\), O\(^2-\), O\(^2+\), O\(^2+\) and CO (bond order, stability and magnetic properties to be discussed). Polarization concept, Fazan’s
rule, bond length, bond angle and bond energy, polar and non-polar molecules, dipole moment.
Weak interactions: i). Hydrogen bond: Intra molecular and Intermolecular types, anomalous
properties of HF, H\(_2\)O, NH\(_3\), alcohols, carboxylic acids, nitro phenols and bio molecules.
ii) van der Waal’s forces: Noble gases and molecular crystals (dry ice, Iodine and solid SO\(_2\))
Metallic bond: Band theory, electrical properties of metals, semiconductors and insulators.

UNIT-III

Silicates 2hours
Structure of SiO\(_4^+\), Classification of silicates based on the structure. Zeolites: their structure and applications.

Noble gases 3hours
Introduction, isolation of Helium from Natural gas, applications of Noble gases. Preparation
properties and structures of fluorides and oxides of Xenon (XeF\(_2\), XeF\(_4\), XeF\(_6\), XeO\(_3\), XeO\(_4\)).

General study of d and f block elements. 8hours
Transition elements: electronic configuration, atomic and ionic radii, ionisation energy, oxidation
states, redox potentials, spectral and magnetic properties, catalytic activity, interstitial compound
formation.
Lanthanides and Actinides: Electronic configuration, atomic and ionic sizes, lanthanide contraction and its consequences. Oxidation states, spectral and magnetic properties, comparison of oxidation states, complex formation and magnetic properties of d and f block elements. Ion exchange method for separation of Lanthanides.

UNIT-IV

Aromatic hydrocarbons
9 hours

General mechanism of aromatic electrophilic substitution. Mechanism of nitration of benzene including evidence for the formation of nitronium ion, energy profile diagram and isotopic effect. Orienting influence of substituents in toluene, chlorobenzene, nitrobenzene and phenol.

Aromatic nucleophilic substitution via benzyne intermediate, mechanism with evidences for the formation of benzyne by trapping with anthracene, Birch reduction. Side chain oxidation of toluene to benzaldehyde and benzoic acid. Oxidation of naphthalene, anthracene and phenanthrene. Diels-Alder reaction of anthracene with 1,2-dichloroethene.

Organic halogen compounds
4 hours

Alkyl halides: Nomenclature. Nucleophilic substitution reactions - SN1 and SN2 mechanisms with energy profile diagrams. Effect of (i) nature of alkyl groups, (ii) nature of leaving groups, (iii) nucleophiles and (iv) solvents on SN1 and SN2 mechanisms. Elimination reactions - E1 and E2 mechanisms; Hofmann and Saytzeff eliminations with mechanism.

Aryl halides: Preparation by halogenation. Relative reactivity of alkyl, allyl, vinyl, aryl and aralkyl halides towards nucleophilic substitution.
B. Sc., –III Semester
Paper III

UNIT-I

Chemical Kinetics
7 hours

Review of terms – Rate, Order and Molecularity.
Derivation of expression for the rate constant of a second order reaction with \(a = b \) and \(a \neq b \). Expression for half-life of a second order reaction. Mean life for first order reaction to be mentioned. Problems on rate constant, half-life period, mean life period and order of reaction.

Theories of reaction rates: Effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy. Problems.
Simple collisions theory based on hard sphere model, transition state theory (equilibrium hypothesis). Expression for the rate constant based on equilibrium constant and thermodynamic aspects. Steady state approximation and Lindemann’s hypothesis.
Experimental determination of kinetics of: (i) inversion of cane sugar by polarimetric method, (ii) spectrophotometric method for the reaction between potassium persulphate and potassium iodide.

Thermodynamics I
6 hours

Exact and inexact differentials. Review of terms, I law of Thermodynamics. Work done (derivation with problems) in isothermal and adiabatic expansion and compression of an ideal gas (IUPAC sign conventions to be used).
Heat capacity of a gas at constant pressure and constant volume: relation between \(P, V \) and \(T \) in an adiabatic process to be derived. Derivation of Kirchoff’s equation. Numerical problems.

Spontaneous and non-spontaneous processes.

Second law of thermodynamics: Limitations of I law of thermodynamics with illustrations. Need for II law of thermodynamics, different ways of stating II law with respect to heat and spontaneity. Other forms of II law of thermodynamics. Concept of entropy and its physical significance—illustrations with order, disorder, physical and chemical processes and probability.

Heat engine—Carnot’s cycle and derivation of the expression for its efficiency. Problems based on efficiency equation. II law in terms of efficiency (\(\eta \)). Change in entropy in reversible and irreversible processes (derivations required). Calculation of entropy changes in reversible isothermal and reversible adiabatic processes. Phase transitions in terms of Entropy (Fusion, vaporization, sublimation and polymorphic changes) in terms of entropy. Limitations of the entropy concept of spontaneity. Problem on Phase transitions

UNIT-II

Thermodynamics II
4 hours

Derivation of van’t Hoff reaction isochore and Clausius-Clapeyron equation. Its applications to ΔT_b and ΔT_f determination (thermodynamic derivation not required).
Qualitative treatment of Nernst heat theorem and III law of thermodynamics-statement only.
Elementary concept of residual entropy.

Surface chemistry

4 hours

Review of surface phenomena.
Theories of adsorption. Adsorption isotherms and BET equation (derivation included), Adsorption indicators. Surface film on liquids.
Catalysis –Types and theories ((intermediate compound theory and adsorption theory).
Heterogeneous catalysis: surface reactions, unimolecular, bi-molecular surface reactions. pH dependence of rate constant of catalysed reactions. Autocatalysis.

Organic and Inorganic Polymers

3 hours

Differences between inorganic and organic polymers.
Polymerisation: types: addition and condensation polymerisation
Molecular weight of Polymers: Expression for Weight average and Number average (experimental determination is not required)
Preparation and applications of the following types of polymers
1. Plastics: i)thermosetting plastics(Phenol-formaldehyde) ii) thermo softening plastics(PVC)
2. Fibers: Acrylic, polyamide, polyester types: one example for each
3. Rubber: Neoprene,
4. Fluoro Carbons: Teflon
5. Silicones.

Compounds of some Nonmetals.

2 hours

i) Boron and its compounds: Synthesis, structure and applications of Diborane, Borazole and Boron trifluride.

UNIT-III

Metallurgy

5 hours

Ellingham’s diagrams: Salient features. Selection of reducing agents using Ellingham’s diagrams.Extraction of the following metals.
i) Nickel from sulphide ore
ii) Thorium from Monazite sand
iii) Uranium from Pitch blende
iv) Plutonium from Nuclear waste.

Alcohols and Thiols

8 hours

Alcohols: Introduction and classification. Methods of preparation - (i) From carbonyl compounds - reduction of aldehydes and ketones (by Meerwein-Pondorff-Verley reaction); (ii) from acids and esters (by reduction with LiAlH$_4$); (iii) From alkenes (by hydroboration-oxidation with alkaline peroxide); (iv) hydration of alkenes. Reactions of alcohols: Acidic nature, esterification, oxidation of alcohols with K$_2$MnO$_4$. Comparison of the reactivity of 1°, 2° and 3° alcohols- Lucas test, oxidation with K$_2$Cr$_2$O$_7$.
Glycols: Preparation from alkenes using OsO₄, KMnO₄ and from epoxides. Oxidation of glycols by periodic acid and lead tetraacetate with mechanisms. Pinacol-pinacolone rearrangement.

Glycerol: Preparation from propene and from oils/fats. Uses. Reactions of glycerol: (i) nitration, (ii) action of concentrated H₂SO₄ and (iii) oxidation by periodic acid.

Thiols: Nomenclature. Methods of formation and chemical reactions (with sodium, NaOH, metal oxides, formation of thioesters and oxidation with mild and strong oxidizing agents). Uses of dithianes. Introduction of umpolung character (reversal of polarity) in carbonyl compounds.

UNIT-IV

Phenols

Ethers and Epoxides

Epoxides: Preparation using per acids, Darzen’s reaction. Reactions of mono and 1,2-disubstituted epoxides with (i) carbon nucleophiles, (ii) nitrogen nucleophiles, (iii) reduction with LiAlH₄.

Fertilizers

Introduction (need of fertilizers), functions of essential plant nutrients (N,P,K), Classification of fertilizers with examples. Nitrogenous, Phosphatic and mixed fertilizers with suitable examples. Manufacture of urea and Super phosphate of lime, and their uses. Fertilizer industries in India.

Organometallic compounds

Preparation and synthetic applications of Grignard reagents, Organolithium compounds and lithium dialkylcuprates.
UNIT-I

Phase Equilibria 7 hours
Statement and explanation of the terms with examples for phase (P), component (C) and degree of freedom (F). Definition and significance of phase rule. Derivation of phase rule. Application of phase rule to one component systems-water and sulphur, -modified form of phase rule to two component systems. Water–potassium iodide and lead-silver systems. Eutectic mixtures and their applications (examples: freezing mixtures, desilverisation of lead by Patterson’s method).

Solid state 6 hours
Liquid crystals-Types with examples. Applications
Superconducting solids-High temperature superconductors. Applications.

UNIT-II

Water Technology 3 hours
Types of impurities present in water. Causes for the hardness of water. Permissible levels of ions present in water. Treatment of water for domestic and Industrial purposes by the following methods.
i) Demineralisation of water by Ion exchange method.
ii) by reverse Osmosis method.

Nuclear and Radiochemistry. 8 hours

Powder metallurgy 2 hours
Advantages of powder metallurgy and its applications. Methods of production of metal powders. production of Tungsten powder from Wulframite.

UNIT-III

Steel 5 hours
Iron-Carbon Phase diagram, Austenite, Ferrite, Cementite and Pearlite phases.
Alloy steels: Influence of Si, Mn, Cr, Ni, Ti and W on the properties of Steel.
Ferro alloys: Production of ferro chrome, ferro manganese, and ferro silicon and their applications.

Aldehydes and Ketones 8 hours
Nomenclature. Preparation of aldehydes: from acid chlorides (Rosenmound reaction), Gattermann-Koch aldehyde synthesis. Preparation of Ketones: From nitriles, from carboxylic acids with alkyl lithium, from acid chlorides with metal alkyls.
UNIT-IV

Carboxylic acids and their derivatives. 5 hours
Nomenclature. Preparation: Acid hydrolysis of nitriles with mechanism. Acidic strength (pKₐ values) - Effect of substituents on the strength of aliphatic and aromatic carboxylic acids. (comparison of acidic strength of formic and acetic acids; acetic acid and monochloro, dichloro, trichloro acetic acids; benzoic and p-nitrobenzoic acid; benzoic acid and p-aminobenzoic acid)
Reactions: Formation of esters, acid chlorides, amides and anhydrides. Hell-Vollhardt-Zelinski reaction, Decarboxylation and reduction (using LiAlH₄). (already included under preparation of alcohols from acid)
Di and tri carboxylic acids: Action of heat on dicarboxylic acids (Oxalic to Adipic acids)
Reactions of tartaric acid and citric acid. (action of heat, reduction with HI).
Reactions of acid chlorides (hydrolysis, reaction with alcohol, ammonia and lithium dialkylcuprates) Acid anhydrides (hydrolysis, reaction with alcohol, ammonia). Esters (alkaline hydrolysis, ammonolysis and alcoholysis). Amides (hydrolysis, reduction, Hoffmann rearrangement). Mechanism of ester hydrolysis - acid and base catalysed (acyl O-cleavage: Bₐc₂, Aₐc₂; alkyl O-cleavage: Aₐl₁ mechanisms).

Tautomerism and Enolates 4 hours
Tautomerism in carbonyl compounds – Keto-Enol tautomerism. Acidity of α-hydrogen atoms in aldehydes, ketones and active methylene compounds (example diethyl malonate, ethyl acetoacetate and acetyl acetone). Preparation of (from acetic acid) and synthetic applications of diethyl malonate (preparation of monocarboxylic acids - butanoic acid, dicarboxylic acid - Adipic acid, unsaturated acids - cinnamic acid, ketones - butanone, cyclic compounds - barbituric acid)
Preparation of ethyl acetoacetate (from ethyl acetate). Synthetic applications of ethyl acetoacetate (preparation of monocarboxylic acids - butanoic acid, dicarboxylic acid –succinic acid, unsaturated acids - crotonic acid, ketones - butanone).

Environmental Chemistry 4 hours
B.Sc., - V Semester
Paper V

UNIT-I

Stereochemistry
8hours
Elements of symmetry in chiral and achiral molecules, chirality, stereogenic centre. Fischer projection formulae.
Diastereomers: Threo and Erythro isomers.
Racemisation and resolution. Relative and absolute configuration.
Geometric isomerism due to restricted rotation about single bonds- diphenyl systems.
Geometric isomerism: Determination of configuration of geometric isomers. Cis & trans, E, Z system of nomenclature. Geometric isomerism in oximes.
Alicyclic compounds: Conformations of four to eight membered cycloalkanes and disubstituted cyclohexanes.
Bicyclic systems: Nomenclature and conformations of decalins and norbornane.

UNIT-II

Amines
5hours
Classification. Preparation of alkyl and aryl amines-reductive amination of carbonyl compounds, Gabriel phthalimde synthesis. Basicity of amines in aqueous solution: Inductive, resonance, steric and solvation effects on the basicity of amines. Reaction of amines as nucleophiles – Methylation, quarternary salts, Hoffmann elimination with mechanism. Distinguishing reactions of 1°, 2° and 3° amines.
Diazotisation and synthetic applications of diazonium salts. Sandmeyer’s reaction. (conversion to chlorobenzene, bromobenzene and benzonitrile), hydrolysis, reduction (to phenyl hydrazine and aniline), coupling reactions to give azo dyes (p-hydroxyazobenzene and 1-phenylazo-2-naphthol).
Heterocyclic compounds
4hours

UNIT-III

Chemistry of Natural Products
10hours
Carbohydrates: Introduction and classification.
Ketoses: Fructose, interconversion of glucose and fructose.

UNIT-IV

Spectroscopy of Organic compounds 8 hours

UV-Visible spectroscopy: Introduction. Chromophores and auxochromes; blue shift and red shift. Graphical representation of spectra of 1,3-butadiene, benzene and lycopene. Influence of conjugation on UV absorption—Comparison of UV spectra of acetone and methyl vinyl ketone.

IR spectroscopy: Introduction. Stretching frequencies of −OH (free and H-bonded), alkyl −C−H, C≡C, C=C, C−C, C=O and C−O groups (by taking suitable examples). Graphical representation of IR spectra of benzoic acid and methyl benzoate.

NMR spectroscopy: Basic principles of proton magnetic resonance: Nuclear magnetic spin quantum number I, influence of the magnetic field on the spin of nuclei, spin population, saturation using radio frequency. Nuclear magnetic resonance. Chemical shift (δ values), uses of TMS as reference. Nuclear shielding and deshielding effects. Equivalent and non-equivalent protons. Effect of electronegativity of adjacent atoms on chemical shift values. Spin-spin splitting and spin-spin coupling (qualitative treatment only).

Applications of NMR spectroscopy including identification of simple organic molecules. **Examples:** Shielding and deshielding effects for (i) methane (ii) CH₃–Cl (iii) CH₂Cl₂ (iv) CHCl₃. Spin-spin coupling in (i) Cl₂CHCHO (ii) 1,1,2-trichloroethane (iii) CH₃CH₂Cl.

Industrial Organic chemistry 5 hours

Synthetic dyes: Introduction and classification. Colour and constitution. Synthesis of congo red, malachite green, alizarin and indigo.

Drugs: Chemotherapy, classification of drugs. Synthesis and uses of paracetamol, diclofenac, ranitidine, sulphanilamide and chloramphenicol.

Introduction to Green Chemistry: Principles of Green chemistry and its application to the synthesis of paracetamol.
UNIT-I

Electrochemistry I
10 hours

Review of electrolytes and Conductance related terms

Methods of determination of molar conductance. Conductometric titrations (only acid-base type).
Kohlrausch’s law and its applications: (i) evaluation of \(\Lambda_\infty \) from \(\Lambda_+ \) and \(\Lambda_- \) (ii) evaluation of degree of dissociation of a weak electrolyte (iii) evaluation of \(\Lambda_\infty \) of a weak electrolyte (iv) determination of solubility from conductance of saturated solutions of sparingly soluble salts (AgCl and BaSO\(_4\)). Problems based on these.
Galavanic cell: conventions of representing galvanic cells-reversible and irreversible cells, derivation of Nernst equation for single electrode potential (free energy concept).

UNIT-II

Electrochemistry II
5 hours

Weston-cadmium cell: Determination of emf of a cell by compensation method. Determination of \(E^\circ \) of Zn/Zn\(^{2+}\) and Cu/Cu\(^{2+}\) electrodes. Liquid junction potentials, elimination of liquid junction potential.
Types of electrodes: Metal and gas electrodes (chlorine), metal/metal insoluble salt electrodes, redox electrodes. Reference electrodes-standard hydrogen electrode, calomel electrode, quinhydrone electrode and glass electrode. Determination of pH using these electrodes. Numerical problems.
Concentration cells: (i) emf of concentration cells (ii) determination of solubility of sparingly soluble salts and numerical problems. Redox electrodes, emf of redox electrodes. Potentiometric titration involving only redox systems.

Ionic equilibria
3 hours

Hydrolysis of salts of weak acids and weak bases. Ionic product of water. Relationship between \(K_h, K_w, K_a \) and \(K_b \). Degree of hydrolysis and its relationship with \(K_h \). Effect of temperature and dilution on degree of hydrolysis. pH of salt solutions. Problems.
Common-ion effect, buffers, buffer action and buffer capacity. pH of buffers. Henderson’s equation and its derivation. Solubility product and ionic product in precipitation and in qualitative analysis.
Analytical and biological applications of buffers.
Theories of indicators.
UNIT-III

Physical properties and Molecular structures 5 hours

Chemical Spectroscopy I 5 hours

UNIT-IV

Chemical Spectroscopy II 4 hours
Vibrational spectroscopy: Hooke’s law- Expression for the frequency of SHO-force constant and its significance. Expression for vibrational energy levels of SHO. Zero point energy., numerical problems. Degree of freedom of polyatomic molecules– modes of vibration for CO₂ and H₂O molecules.

Raman spectroscopy: 3 hours

Electroanalytical Methods 5 hours
Voltammetry at a dropping mercury electrodes (DME)-Types of current obtained at DME. Ilkovic equation and its applications. Current –potential relation for a cathodic process – half wave potential. Cyclic Voltammetry-Principles-Experimental set up-Quantitative analysis, determination of diffusion coefficients.
UNIT-I

Coordination and Organometallic compounds I

10 hours

Coordination compounds, ligands and their classification (mono, bi, tri, tetra, penta and hexadentate ligands) and ambidentate ligands, coordination number, nomenclature of coordination compounds in detail. Theories of structure and bonding (Explanation for the formation of complexes by Werner’s Theory in detail and its limitations). EAN rule, Valence bond theory—postulates, low spin and high spin complexes with examples, limitations of VBT. Crystal field theory (octahedral, tetrahedral and square planar complexes). Crystal field splitting and crystal field stabilization energies, limitations of CFT. Magnetic properties of [CoF₆]₃⁻, [Co(NH₃)₆]³⁺, [Fe(CN)₆]⁴⁻, [Fe(CN)₆]³⁻. Spectral properties of [Ti(H₂O)₆]³⁺, [Co(H₂O)₆]³⁺, [CoCl₄]²⁻. Isomerism—Structural: ionization, linkage, hydrate and coordination isomerism with examples. Stereoisomerism-geometrical and optical isomerism with examples. Organometallic compounds – ligands, classification (hapticity). Synthesis and structure of K[PtCl₃(η²-C₂H₄)] and [Fe(η⁵-C₅H₅)]₂.

UNIT-II

Coordination and Organometallic compounds II

4 hours

Metal carbonyls – Cr(CO)₆, Co₂(CO)₈, Mn₂(CO)₁₀; eighteen electron rule and its deviations with examples. Applications of coordination/organometallic compounds: cis-platin in cancer therapy, Na₂CaEDTA in the treatment of heavy metals (Pb, Hg) poisoning, Wilkinson’s Catalyst in alkene hydrogenation, Monsanto acetic acid process.

Industrial Materials I

6 hours

UNIT-III

Industrial Materials II

7 hours

Paints and Varnishes: Constituents of oil and emulsion paints and their role, constituents of varnishes.
Fuels: Characteristics, Calorific value and its determination using bomb calorimeter, Coal-Varieties, Gaseous fuels-advantages, constituents and their significance, production of Coal gas and composition of LPG. Octane number.
Explosives: Classification, preparation of dynamite and TNT.
Propellants: Characteristics, classification and their applications.

Bioinorganic Chemistry 3 hours
Essential and trace elements in biological systems with reference to Na\(^+\), K\(^+\), Ca\(^{2+}\), Fe\(^{2+}\), P, Cu, V and Ni. Metallo-porphyrins with special reference to haemoglobin, myoglobin and chlorophyll. Role of cobalamin (vitamin-B\(_{12}\)coenzyme) in living systems.

UNIT-IV

Chemistry of Newer materials 10hours
Super conductors: Introduction, definition, type1, type 2 and atypical. Preparation of high temperature super conductor-Y\(_1\)Ba\(_2\)Cu\(_3\)O\(_{x\pm\delta}\). BCS theory (qualitative treatment only) and general applications of high temperature super conductors.
Fullerenes: Introduction, definition, preparation and isolation of C\(_{60}\). Structure and Chemical reactions (redox reactions, electrophilic aromatic substitution and bromination) of C\(_{60}\). Commercial uses of C\(_{60}\). Carbon nanotubes-Introduction, definition, examples and structure.
Nanomaterials: Introduction, definition and electronic structure. Different methods of production: Sol gel synthesis, inert gas condensation, mechanical alloying (ball milling), plasma synthesis, electrodeposition, and general applications.
UNIT-I

INTRODUCTION TO BIOCHEMISTRY

CARBOHYDRATES
Structure and biological importance of derivatives of monosaccharides.
Amino sugars: β-D-glucosamine, galactosamine and their N-acetylated forms: N-acetylmuramic acid (NAMA); N-acetylenuraminic acid (NANA)
Sugar acids—structure and biological importance of D-gluconic acid, D-glucuronic acid and D-glucaric acid.
Sugar phosphates—structure and biological importance of Glucose-6-P, Fructose-6-P, Fructose-1,6-di-P, β-D-ribose-5-P and β-D-deoxyribose-5-P.
Structure and biological importance of oligosaccharides – isomaltose, cellobiose, trehalose.
Polysaccharides - source, comparative account of partial structure and biological function of starch, glycogen, cellulose, chitin and insulin.

LIPIDS
Introduction, Classification.
Fatty acids—definition, classification as saturated and unsaturated with examples and structure (lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic and arachidonic acids). Essential fatty acids – definition with examples
Triglycerides—Structure of simple and mixed glycerides, properties of triglycerides- acid and alkali hydrolysis, saponification number and its significance, iodine number and its significance, rancidity (oxidative and hydrolytic), biological importance of triglycerides.
Phosphoglycerides – general structure of 3-Sn–phosphatidic acid, lipid bilayer (as in cell membrane), micelles, liposomes and its applications, structure and biological importance of lecithin, cephalin, phosphatidylerine, phosphatidylcholine.
Cholesterol – definition, types (HDL, LDL and VLDL)
Sphingolipids—structure and biological significance of ceramide.

UNIT-II

PROTEINS
α-amino acids: Introduction, structure, classification on the basis of polarity of R-groups, essential and non essential amino acids, ionic properties and reactions of amino acids with alcohol, nitrous acid and Ninhydrin.
Levels of organizations of Protein: Primary structure, Secondary structure (α-helix, triple helix eg., Collagen and β-pleated sheet), tertiary structure and forces stabilizing it, quaternary structure.

Denaturation and renaturation: Thermal renaturation-Aufinsen’s experiment with ribonuclease.

Classification of proteins based on structure, composition and biological function (enzymes, hormones, transport agents, antibodies, structural materials with examples).

NUCLEIC ACIDS 3hours
Types–Components of nucleic acids, bases, nucleosides and nucleotides with structures. Partial structure of polynucleotide.
Structure of DNA (Watson-Crick model) and RNA. Biological roles of DNA and RNAs.
Protein-nucleic acid interaction- chromatin and viral nuclear capsid.

HORMONES 2hours
Definition.
Classification - a) amino acid derivatives (epinephrine and thyroxine); b) peptide (oxytocin and vasopressin) and polypeptide hormones (insulin and glucagon); c) Steroid hormones (progesterone, testosterone) with functions.
Role of insulin and glucagon in glucose homeostasis.
Mediators of hormone action – Ca^{2+}, cyclic AMP.

UNIT-III

ENZYMES 4hours
Introduction, Holo enzyme (apo enzyme and co enzyme). Active site, specificity.
Classification of enzymes (EC code number not required).
Enzyme substrate interaction- Fischer and Koshland models.
Enzyme kinetics–factors affecting rate of enzymatic reactions – enzyme concentration, substrate concentration, pH and temperature (mention M. M. equation).
Allosteric enzymes–definition and example
Enzyme inhibitions-Competitive, noncompetitive and uncompetitive inhibition with one example for each.

BIOLOGICAL OXIDATION 4hours
High energy phosphates–definition, examples, structural features of ATP that makes ATP a high energy phosphate (electro static repulsion, opposing resonance, solvation of ATP).
Examples of high energy phosphates other than ATP. Energy coupling in biological reactions (explain the concept with suitable examples).
Biological oxidation – comparison of oxidation with combustion using glucose as an example. Redox potentials of some biological important half reactions. Calculation of energy yield from biological redox reaction (oxidation of NADH by oxygen, reduction of acetaldehyde by NADH). Mitochondrial electrotransport chain, oxidative phosphorylation. Substrate level phosphorylation.
BIOCHEMICAL TECHNIQUES 2hours
Principle and applications of:
- Paper chromatography and TLC.
- Electrophoresis–cellulose acetate membrane electrophoresis and PAGE.

UNIT-IV

METABOLISM 6hours
Catabolism and anabolism (explanation with an example) – Carbohydrate metabolism, glycolysis, fate of pyruvate. TCA cycle, energetic.
Gluconeogenesis–definition, synthesis of glucose from lactate.
Fatty acid metabolism–activation of fatty acids, role of carnitine, β-oxidation pathway, energetics.
Protein metabolism–general aspects of amino acid degradation – transamination, deamination and decarboxylation. Urea cycle.

MOLECULAR BIOLOGY 4hours
Central dogma of molecular biology–semi conservative replication and mechanism of DNA replication, transcription, translation.
DNA finger printing – Definition and its applications.
SUGGESTED BOOKS

Inorganic Chemistry

4. Inorganic Chemistry, ELBS 2nd Edition
5. Environmental Chemistry
6. Nuclear and Radiation Chemistry
7. Modern Inorganic Chemistry
 W. L. Jolly, McGraw Hill Co.
8. Principles of Inorganic Chemistry
13. Essential Trends in Inorganic Chemistry
 C. M. P. Mingos, Oxford Univ Press, 1998
15. Modern Chemistry, 4th Edition
16. Fundamental Concepts of applied Chemistry,
 Jayashree Ghosh, S Chand Publications.
17. Industrial Chemistry,
 B. K. Sharma, Goel Publishing House

Organic Chemistry

2. Advanced Organic Chemistry
4. Organic Chemistry
5. Organic Chemistry, Maitland Jones, Jr., W. W. Norton & Company
6. Advanced Organic Chemistry
 O. S. Bahl and A. Bahl., S. Chand & Co. 1995
7. Advanced Organic Chemistry
8. Understanding Organic Reaction Mechanisms
9. Organic Chemistry
 M. K. Jain, Nagin & Co., 1987
11. Organic Spectroscopy
12. Organic Spectroscopy
13. Synthetic Drugs
14. Stericchemistry of Organic Compounds
 Ernest L. Eliel, Samuel H. Wilen, Wiley India Edition, 1994

Physical Chemistry

1. Physical Chemistry, 7th Edition
2. The Elements of Physical Chemistry, 3rd Edition
3. Physical Chemistry – A molecular Approach
4. Introduction to Physical Chemistry, 3rd Edition
5. Text Book of Physical Chemistry
7. Text Book of Physical Chemistry
8. Physical Chemistry
9. Physical Chemistry
11. Text Book of Polymer Science
 Billmeyer, Dr. F. W. John Wiley & Sons, 1984.
12. Basic Physical Chemistry

Biochemistry

1. Concise Text Book of Biochemistry
2. Biochemistry
3. A Text Book of Biochemistry
4. Biochemistry
5. Fundamentals of Biochemistry
6. Biochemistry
 COSIP-ULP, Bangalore University, 1981.
7. Outlines of Biochemistry
8. General Biochemistry
 Weil J. H., Wiley Eastern
9. Biochemistry
 Campbell M. K., Harcourt Brace & Co.
Chemistry Practicals for B. Sc., Course

I Semester: Practical 1 (General Chemistry) 3 hours per week

1. Calibration of glass wares: (i) Pipette (ii) Burette (iii) Volumetric flask
2. Estimation of potassium permanganate using standard sodium oxalate solution.
3. Estimation of ferrous ammonium sulphate using standard potassium dichromate solution with potassium ferricyanide as an external indicator.
4. Estimation of ferrous ammonium sulphate using standard potassium dichromate solution with diphenyl amine as an internal indicator. (Change to ferroin indicator?)
5. Estimation of sodium thiosulphate using standard potassium dichromate solution.
7. Determination of the percentage of available chlorine in the given sample of bleaching powder.
8. Determination of percentage of manganese dioxide from pyrolusite ore.
10. Estimation of chloride by Volhard’s method.
11. Estimation of ferrous and ferric iron in a given mixture using standard potassium dichromate solution.
13. Estimation of carbonate and bicarbonate in a given mixture.

Note: Standard solutions to be prepared for experiments 2 to 6.

II Semester: Practical II (Physical Chemistry) 3 hours per week

1. Determination of the density using specific gravity bottle and viscosity of a liquid using Ostwald’s viscometer.
2. Determination of percentage composition of a binary liquid mixture by viscosity method.
3. Determination of molar mass of polymer by viscosity method.
4. Determination of the density using specific gravity bottle and surface tension of a liquid using Stalagmometer.
6. Determination of degree of dissociation of an electrolyte by ebullioscopic method.
7. Determination of transition temperature of a salt hydrate by thermometric method.
8. Determination of distribution coefficient of acetic acid between water and butanol.
9. Determination of distribution coefficient of benzoic acid between water and toluene.
10. Effect of surfactants on the surface tension of water (Stock solution to be given).
III Semester: Practical III (Organic Chemistry)

Preparation and purification of organic compounds
1. Recrystallisation and determination of melting point of solids (mixed melting point determination and its importance may be mentioned).
2. Simple distillation and determination of boiling point of liquids.
3. Purification of solids by sublimation.

One stage preparation
(Preparation, recrystallization and melting point determination of the recrystallised sample)
4. Preparation of aspirin from salicylic acid.
 (Note: Acetic anhydride is to be prepared freshly by distilling acetyl chloride and sodium acetate mixture).
5. Preparation of paracetamol from \(p \)-aminophenol.
6. Preparation of dibenzalacetone from benzaldehyde (using acetone-alcoholic sodium hydroxide).
7. Preparation of \(p \)-aminobenzoic acid from \(p \)-nitrobenzoic acid.
8. Preparation of \(m \)-dinitrobenzene from nitrobenzene.
9. Preparation of benzoic acid from benzaldehyde.

Two stage preparations
10. Preparation of \(p \)-bromoaniline from acetanilide.
11. Preparation of \(p \)-nitroaniline from acetanilide.
12. Preparation of \(m \)-nitrobenzoic acid from methyl benzoate.
13. Preparation of methyl orange/methyl red by diazotization and coupling.

Chromatography
15. Thin layer chromatography: Separation of green leaf pigments/separation of a mixture of two organic compounds.
16. Column chromatography: Separation of a mixture of two organic compounds

IV Semester: Practical IV (Inorganic Chemistry)

1. Systematic semi-micro qualitative analysis of a mixture of two simple salts (with no interfering radicals).
2. Separation of metal ions (\(\text{Cu}^{2+}, \text{Co}^{2+}, \text{Ni}^{2+}, \text{Fe}^{2+} \)) using paper chromatography and calculation of \(R_f \) values (To be performed by the students)
3. Separation of Mg(II) and Fe(II) by solvent extraction technique.
4. Effluent analysis.
VI Semester: Practical V (Organic Chemistry) 3 hours per week

2. Isolation of lycopene from tomatoes.
3. Isolation of caffeine from tea leaves.

V Semester: Practical VI (Physical Chemistry) 3 hours per week

1. Determination of velocity constant for acid catalysed hydrolysis of methyl acetate and determination of energy of activation.
2. Determination of velocity constant for the saponification of ethyl acetate \((a = b)\).
3. The study of kinetics of potassium persulphate and potassium iodide colorimetrically.
4. Determination of equivalent conductivity of 0.1 N sodium chloride and verification of DHO equation.
5. Determination of dissociation constant of monochloroacetic acid by conductivity method.
6. Conductometric titration of hydrochloric acid with sodium hydroxide.
7. Potentiometric titration of potassium dichromate with ferrous ammonium sulphate.
8. Determination of Critical Micellar Concentration (CMC) by conductivity method.
9. Determination of \(pK_a\) of a weak acid by pH metric method.
10. To construct the phase diagram of two component system (Ex. diphenylamine-benzophenone) by cooling curve method.
11. Determination of percentage of sodium chloride by miscibility temperature method.
12. Estimation of \(Cu^{2+}\) colorimetrically and verification of Beer-Lambert’s law.
13. Determination of Oxidation and Reduction potential of \(K_4Fe(CN)_6/K_3Fe(CN)_6\) system by cyclic voltammetry.

VI Semester: Practical VII (Inorganic Chemistry) 3 hours per week

1. Estimation of percentage of iron in haematite using bariumdiphenylamine sulphonate as an internal indicator.
2. Estimation of calcium in lime stone.
3. Estimation of copper in brass.
4. Estimation of zinc using EDTA.
5. Estimation of total hardness of water using EDTA.
8. Preparation of cuprammoniumsulphate and determination of \(\lambda_{max}\) and hence CFSE.
9. Preparation of sodium trioxalatoferrate (III) and estimation of iron.
11. Preparation of ferrous oxalate and its analysis (both iron and oxalate).
1. Preparation of buffers and determination of their pH values using pH meter.
2. Estimation of reducing sugars by Hegdorn-Jensen method.
4. Estimation of creatinine by Jaffe’s method.
5. Estimation of inorganic phosphate by Fiske-Subbarow method.
6. Estimation of total reducing sugars by DNS (dinitrosalicylic acid) method.
7. Isolation of lactose and casein from milk and estimation of lactose by colorimetric method.
10. Separation of α-amino acids by paper chromatography.
11. Isolation of DNA from onions.